Show that the two lines are parallel: L1: 4y = 24x +12, L2: 2y + 13 = 12x

Two lines are parallel when they have the same gradient.
When the equation is written in the form: y = mx + c, m is the gradient.
We need to arrange our equations in the form y = mx + c as this is the easiest way to compare gradients.
L1: 4y = 24x + 12
To get the desired form we need to divide all parts of the equation by 4 giving: y = 6x + 3
L2: 2y + 13 = 12x
Before we do anything we need to rearrange this equation and take 13 over to the other side giving: 2y = 12x - 13Now we can divide it all by 2 to give: y = 6 x - 13/2
Now that we have both equations in the required form we can compare them, as they both have a gradient of 6 we can confirm that they are parallel.

DT
Answered by Dominique T. Maths tutor

19199 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How can I work out the equation of a line defined by 2 known points?


Jo wants to work out the solutions of x^2 + 3x – 5 = 0 She says, ‘‘The solutions cannot be worked out because x^2 + 3x – 5 does not factorise to (x + a)(x + b) where a and b are integers.’’ Is Jo correct?


How to find the exact formula of the function if the graph of it is given?


See answer section


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences