How do you integrate sin^2(3x)cos^3(3x) dx?

Use the identity sin^2(y) + cos^2(y) = 1 to get the expression sin^2(3x) (1-sin^2(3x)) cos(3x) dx.Use the substitution u= sin(3x) by dividing the expression by the derivative, u’= 3cos(3x).The expression then becomes u^2 (1-u^2) (1/3) du. Now everything is in terms of u so we can expand and integrate.Expanding gives (1/3) u^2 - (1/3) u^4 du.The answer in terms of u is now (1/9) u^3 - (1/15) u^5 + C.   Don’t forget the +C!!!Finally, substitute back into x to get (1/9) sin^3(3x) - (1/15) sin^5(3x) +C.

ZG
Answered by Zachary G. Maths tutor

8461 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of a curve with gradient 4x^3 -7x + 3/2 which passes through the point (2,9)?


Simplify (􏰀36x^−2)􏰁^ 0.5


A trolley of negilible mass on horizontal tracks is at rest. A person of mass 50kg is standing on the trolley with a bag of mass 10kg. The person throws the bag off the trolley horizontally with a velocity of 3m/s. Calculate the velocity of the man.


The equation of a line is y=e(^2x)-9 and the line has points at (0,a) and (b,0). Find the values of a and b.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences