How do you integrate sin^2(3x)cos^3(3x) dx?

Use the identity sin^2(y) + cos^2(y) = 1 to get the expression sin^2(3x) (1-sin^2(3x)) cos(3x) dx.Use the substitution u= sin(3x) by dividing the expression by the derivative, u’= 3cos(3x).The expression then becomes u^2 (1-u^2) (1/3) du. Now everything is in terms of u so we can expand and integrate.Expanding gives (1/3) u^2 - (1/3) u^4 du.The answer in terms of u is now (1/9) u^3 - (1/15) u^5 + C.   Don’t forget the +C!!!Finally, substitute back into x to get (1/9) sin^3(3x) - (1/15) sin^5(3x) +C.

ZG
Answered by Zachary G. Maths tutor

8348 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Core 1 question: Draw the graph "y = 12 - x - x^2"


How do you prove the 1^2 +2^2+.....+n^2 = n/6 (n+1) (2n+1) by induction?


Given that the binomial expansion of (1+kx)^n begins 1+8x+16x^2+... a) find k and n b) for what x is this expansion valid?


A projectile is thrown from the ground at 30 degrees from the horizontal direction with an initial speed of 20m/s. What is the horizontal distance travelled before it hits the ground? Take the acceleration due to gravity as 9.8m/s^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences