How to find gradient of functions

To find the gradient of a function, that has constant gradient you pick any two points. You label both the x and y co-ordinates of these two points.Then you subtract the y co-ordinates of these two points. You also subtract the x co-ordinates of the two points. The you divide the y value you have calculated with the x value to find the gradient.To find the gradient of a function that does not have constant gradient, i.e. a curve. You have to use differentiation. In order to differentiate a function, you must first make sure the equation is in the form y=. Then you multiply the power of any variable by the constant in front of it. Then you reduce the power by 1 on the variable. Any constant differentiate to 0.For example, y=3^x2+ 2dy/dx= 6x dy/xy is the same concept used at GCSE it is just difference in y divided by difference in x.

SH
Answered by Sinan H. Maths tutor

3742 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following equation: x^(3) - 6x^(2) + 11x - 6 = 0


Let z=x+yi such that 16=5z - 3z*, What is z?


Find the tangent to y = x^2 - 4x + 9 at the point (3,15)


Find, using calculus, the x coordinate of the turning point of the curve y=e^(3x)*cos(4x) pi/4<x<pi/2 (Edexcel C3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning