f(x)=2x+c, g(x) = cx+5, fg(x)= 6x+d, work out the value of d

Let’s call (f(x)=2x+c) equation 1, (g(x) = cx+5) equation 2 and (fg(x)= 6x+d) equation 3.
Start by finding fg(x) in terms of c by substituting (equation 2) into (equation 1) to get (fg(x)= 2(cx +5) + c). You can then equate this with (equation 3) and expand to get 2cx +10 + c= 6x+d. We can’t know what the value of x is but we can equate the two coefficients of x, meaning 2c=6, therefore c=3. ‘d’ represents the rest of the terms on the left-hand side of the equation, meaning that d= 10+c. Since c=3, d=10+3, therefore d=13.

AM
Answered by Anna M. Maths tutor

3870 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If f(x)=8x-3, what is the inverse function?


There are 35 people in a group. x(x+1) of them have a blue car, 5x of them have a red car, 4 have a blue and a red car and 4x-8 do not have car. Work out the probability that a person who has a blue car, has a red car as well.


A ten-sided die with sides numbered 1-10 is thrown. What is the probability of throwing a 1?


200 pupils are taking a school trip. Some are flying, some are taking the bus. There are three times as many boys going as girls. One third of the boys going are flying. How many boys are getting the bus?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning