if a^x= b^y = (ab)^(xy) prove that x+y =1

ln(a^x) = ln(b^y) = ln((ab)^(xy))
xln(a) = xyln(ab)
ln(a) = yln(ab) = y(ln(a) + ln(b))
y = ln(a)/(ln(a)+ln(b))
with same analysis for ln(b^y):
ln(b) = x(ln(a) + ln(b))x = ln(b)/(ln(a)+ln(b))
x + y = (ln(a) + ln(b))/(ln(a) + ln(b)) = 1

SC
Answered by Scott C. Maths tutor

5140 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A smooth 4g marble is held at rest on a smooth plane which is fixed at 30 degrees to a horizontal table. The marble is released from rest - what speed is the marble travelling at 5 seconds after being released? Let g = 9.8ms^2


Solve the


Integrate sec^2(x)tan(X)dx


Why does sin^2(x)+cos^2(x)=1?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences