How do i find dy/dx in terms of t for two parametric equations that are in terms of t.

To differentiate parametric equations we have to use the chain rule in a special way.
We know that the chain rule can be written as dy/dx = dy/dt * dt/dx, as both dts cancel. But if we have an equation x in terms of t, and an equation y in terms of t, the above equation will no longer work, as we want dy/dt, but also dx/dt (rather than dt/dx).
To manage this the trick we use is simply to rewrite the equation as dy/dx = dy/dt / dx/dt. Using this we can now differentiate both equation y and equation x like normal, then put them as a fraction with dy/dt on top and dx/dt on the bottom and reduce this fraction to its simplest form.

BW
Answered by Ben W. Maths tutor

5239 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...


Express 3sin(2x) + 5cos(2x) in the form Rsin(2x+a), R>0 0<a<pi/2


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


Differentiate (x^0.5)ln(x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning