Show that (x+2)(x+3)(x+4) can be written in the form of ax^3+bx^2+cx+d where a, b, c and d are positive integers.

This is a 'show that' question which means that you need to prove that something is true. This question wants you to rewrite (x+2)(x+3)(x+4) into the form of ax^3+bx^2+cx+d. To do this, we have to expand the original formula. It is much easier to do this in two steps rather than expand the formula in one step.So we start with the first two. (x+2)(x+3)(x+4)=(x2+2x+3x+6)(x+4)=(x2+5x+6)(x+4)So now we only have two brackets to expand. We start by multiplying everything in the first bracket by x and then by 4.= (x3+ 5x2+ 6x + 4x2 +20x + 24)We simplify this by adding together numbers with the same coefficient.= (x3 + 9x2 + 26x + 24)so expanded the formula is now x3 + 9x2 + 26x + 24.This has successfully taken the form of ax3 +bx2 + cx + d.a=1, b=9, c=26 and d=24.

AH
Answered by Alicia H. Maths tutor

7768 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If x^2 = 16, why isn't the answer just x = 4?


A person leaves their flat at 8:00am and travels to work at an average speed of 32 mph. They arrive at work at 9:15am. Calculate the distance they travel to work.


There are some people in a cinema. 3/5 of the people in the cinema are children. For the children in the cinema, number of girls:number of boys = 2:7. There are 170 girls in the cinema. Work out the number of adults in the cinema.


Solve the simultaneous equations for x and y: 3x+3y=5 and 6x+5y=9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning