Show that (x+2)(x+3)(x+4) can be written in the form of ax^3+bx^2+cx+d where a, b, c and d are positive integers.

This is a 'show that' question which means that you need to prove that something is true. This question wants you to rewrite (x+2)(x+3)(x+4) into the form of ax^3+bx^2+cx+d. To do this, we have to expand the original formula. It is much easier to do this in two steps rather than expand the formula in one step.So we start with the first two. (x+2)(x+3)(x+4)=(x2+2x+3x+6)(x+4)=(x2+5x+6)(x+4)So now we only have two brackets to expand. We start by multiplying everything in the first bracket by x and then by 4.= (x3+ 5x2+ 6x + 4x2 +20x + 24)We simplify this by adding together numbers with the same coefficient.= (x3 + 9x2 + 26x + 24)so expanded the formula is now x3 + 9x2 + 26x + 24.This has successfully taken the form of ax3 +bx2 + cx + d.a=1, b=9, c=26 and d=24.

AH
Answered by Alicia H. Maths tutor

7126 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How does Pythagoras Theorem work?


Solve the simultaneous equations 2x + 7y = 15 and 3x + 6y = 21


Solve the simultaneous equations: 3x+5y=3 and 6x+6y=10


Sean drives from Manchester to Gretna Green. He drives at an average speed of 50 mph for the first three hours. He then breaks and drives the final 150 miles at 30 mph. Sean thinks his average speed is 40 mph ,is he correct?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning