Find the equation of the normal to the curve x^3 + 2(x^2)y = y^3 + 15 at the point (2, 1)

The first thing when seeing such a question is to find out what the question wants you to do and plan your method to do so.In this case, the question asks you to find the normal of a curve at a given point (2,1). And we know the normal lines are linked to tangents such that their gradient's product is -1. And tangent line is linked to differentiation. Since a point is given then all we need to do is to differentiate the given curve and sub in the value for the point to find the gradient of the tangent at point(2,1). But obviously it's impossible to rearrange the curve equation such that y and x are on different sides of the equation, therefore we would implicitly differentiate the entire equation by d/dx first and the nrearrange to find dy/dx. We different with respect to dx because this is the definition of the gradient of the tangent and would facilitate our further processes.And we would get: 3x^2 + (4xy+ 2x^2*(dy/dx))=3y^2*(dy/dx)in which we have applied the chain ruleThen we rearrange to get (3y^2-2x^2)*(dy/dx)=3x^2+4xytherefore dy/dx=(3x^2+4xy)/(3y^2-2x^2)sub in x=2, y=1dy/dx= (12+8)/(3-8)=20/(-5)=-4this is the gradient of the tangent, therefore the gradient of the normal is (-1)/(-4)=1/4and we again sub in x=2, y=1 into y=mx+cto find that 1=(1/4)*2+ctherefore c=1/2therefore the equation is y=x/4+(1/2) or 4y-x-2=0

KL
Answered by Kelvin L. Maths tutor

3852 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate using the chain rule?


Find the equation of the line perpendicular to the line y= 3x + 5 that passes through the point (-1,4)


Sketch the curve y = (2x-1)/(x+1) stating the equations of any asymptotes and coordinates of the intersection with the axis. As an extension, what standard transformations from C1 could you use on y=1/x to get this curve?


How would you go about integrating a function which has an exponential and a cos/sin term?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning