The rate of decay of the mass is modelled by the differential equation dx/dt = -(5/2)x. Given that x = 60 when t = 0, solve the quation for x in terms of t.

(1) Rearrange the equation so that the left hand side is a function of x, and the right hand side is a function of t only.dx/dt = - (5/2) x(1/x)dx = -(5/2)dt(2) Integrate both sidesln(x/A) = -(5/2)t, where A is the integration constant, chosen to be lnA with no loss of generality(3) Rearrange for xx/A = exp(-(5/2)t)x = Aexp(-(5/2)t)(4) Use the boundary condition that x=60 when t=0.60 = A * 1A = 60x = 60exp(-(5/2)t)

JC
Answered by Joseph C. Maths tutor

6095 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a Derivative?


Solve the complex equation z^3 + 32 + 32i(sqrt(3)) = 0


I don't understand how functions work. How do I decide if something is a function?


Solve the following equations. Leave answers in simplest terms a)e^(3x-9)=8. b) ln(2y+5)=2+ln(4-y)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning