The equation of line L1 is y=4x+3, The equation of line L2 is 4y-16x-2=0, Show that these two lines are parallel.

The equation of a line is shown in the form y=mx+c to prove that two lines run parallel you must prove that they have the same gradient or value of 'm', the number before x. The first equation L1 is already in the y=mx+c form meaning 4 is the 'm' value or the gradient. To show the other equation L2 has the same gradient you need to rearrange it. 4y-16x-2=0, 16x-2 can be added to both sides making 4y=16x+2, the whole equation can then be divided by 4 making y=4x+1/2. You can then see that the gradient or the 'm' value of this equation is 4.Both equations have a gradient of 4, proving that the two lines L1 and L2 are parallel.

SC
Answered by Sophie C. Maths tutor

3596 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a class there are 57 students. Of these 32 study Spanish, 40 study German and 12 students study neither. How many students study Spanish but not German?


Solve the simultaneous equations. 2x + y = 18 x - y = 6


A boat travels due North at 5km/h for 3 hours, then changes course and sails due east for 2 hours, adjusting his speed to 8km/h. What is his total displacement from his original position?


Expand the following brackets: a) 4(x+3) b) 3(x-1)-2(x+5) c) (y-3)^2 d) (y-2)^2 + (y+3)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences