Find the turning value of the following function, stating whether the value is min or max, y = x^2 -6x + 5

First the student needs to differentiate the function to find dy/dx = 2x-6At dy/dx = 0, we know the curve is stationary. Now we can work out the x value such that x = 3Put x=3 back into the original equation to get y = -4.To find whether the value is min or max, we must further differentiate dy/dy to get d^2y/dx^2 = 2Since this is greater than 0, the curve is a minimum.

JW
Answered by Joseph W. Maths tutor

4340 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle C has centre (-5, 12) and passes through the point (0,0) Find the second point where the line y=x intersects the circle.


Find the partial fraction decomposition of the expression: (4x^2 + x -64)/((x+2)(x-3)(x-4)).


The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.


Solve x^4+2x^2-3=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences