Find the turning value of the following function, stating whether the value is min or max, y = x^2 -6x + 5

First the student needs to differentiate the function to find dy/dx = 2x-6At dy/dx = 0, we know the curve is stationary. Now we can work out the x value such that x = 3Put x=3 back into the original equation to get y = -4.To find whether the value is min or max, we must further differentiate dy/dy to get d^2y/dx^2 = 2Since this is greater than 0, the curve is a minimum.

JW
Answered by Joseph W. Maths tutor

4708 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By integrating, find the area between the curve and x axis of y = x*exp(x) between x = 0 and x = 1


Find the coordinates of the turning point of y=e^(2x)*cos(x)?


Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...


How can I find the derivative of y = tan(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning