Find the turning value of the following function, stating whether the value is min or max, y = x^2 -6x + 5

First the student needs to differentiate the function to find dy/dx = 2x-6At dy/dx = 0, we know the curve is stationary. Now we can work out the x value such that x = 3Put x=3 back into the original equation to get y = -4.To find whether the value is min or max, we must further differentiate dy/dy to get d^2y/dx^2 = 2Since this is greater than 0, the curve is a minimum.

JW
Answered by Joseph W. Maths tutor

4703 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


How do I do integration by substitution?


d/dx[sin(x) + cos(x)]


Given that the curve y = 3x^2 + 6x^1/3 + (2x^3)/3x^1, find an expression for the gradient of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning