What is the gradient of the curve y = 2x^3 at the point (2,2)?

Firstky differentiate to gain an equation for the gradient.Differentiating gives:dy/dx = 6x2Insert x = 2 into the above equation to find the gradient at that particular point of the curve.When x = 2, dy/dx = 6× 4 = 24Therefore the gradient is 24.

ER
Answered by Emily R. Maths tutor

8271 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


Find dy/dx when x+2y+3y^2= 2x^2+1


What is a limit?


Find the x and y coordinates of the turning points of the curve 'y = x^3 - 3x^2 +4'. Identify each turning point as either a maximum or a minimum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning