How do you differentiate a function containing e?

y = ex is an interesting function because for any value of x, the corresponding value of y is always equal to the gradient of the curve at that point.Therefore, f(x) is equivalent to f'(x) - the derivative of the function. When you are met with slightly more complex functions, such as y = e2x^2, you can find the derivative of the function by following a simple rule:If f(x) = eg(x), then f'(x) = g'(x)eg(x). Therefore, the power, to which e is raised, remains the same and the function of e is multiplied by the derivative of the power.If we return to our example of y = e2x^2, we know that our g(x) = 2x2, so g'(x) = 4x.From this we know that f'(x) = (e2x^2) x (4x) = 4xe2x^2.

FH
Answered by Finn H. Maths tutor

3981 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


How do I integrate terms with sin^2(x) and cos^2(x) in them? For example integrate (1+sin(x))^2 with respect to x


Integrating (e^x)sin(x)


Evaluate the indefinite integral: ∫ (e^x)sin(x) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning