How do you differentiate a function containing e?

y = ex is an interesting function because for any value of x, the corresponding value of y is always equal to the gradient of the curve at that point.Therefore, f(x) is equivalent to f'(x) - the derivative of the function. When you are met with slightly more complex functions, such as y = e2x^2, you can find the derivative of the function by following a simple rule:If f(x) = eg(x), then f'(x) = g'(x)eg(x). Therefore, the power, to which e is raised, remains the same and the function of e is multiplied by the derivative of the power.If we return to our example of y = e2x^2, we know that our g(x) = 2x2, so g'(x) = 4x.From this we know that f'(x) = (e2x^2) x (4x) = 4xe2x^2.

FH
Answered by Finn H. Maths tutor

4307 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that 8 times any triangle number is always 1 less than a square number


How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2


How to do Integration by Parts?


Differentiate with respect to x: (4x^2+3x+9)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning