How can I determine the characteristics of a curve on an x-y set of axis (eg. points of intersection, stationary points, area under graph)?

To determine the characteristics of a graph, we need to examine what we are been shown in the question. Below is an exam style question:By looking at both the graph and the equation, we can see that in the predefined region the curve has two points of intersection. We can determine both of these points by using the nature that, on the x-axis y=0 and on the y-axis x=0. Using these two identities, we can find from the equation of the curve that point B is (3,0) and O is (0,0). To determine the point A, we will need to differentiate the equation of the curve. This gives us:dydx=1.5x-0.5-1.5x0.5At the stationary point, dy/dx=0. Solving this equation gives us A as approximately (1,2). Finally to find the area under the curve we will need to integrate the equation between the limits of O and B. This gives:033x0.5-x1.5dx = 4527

EC
Answered by Ethan C. Maths tutor

4068 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Problem of Optimisation: A company is designing a logo. The logo is a circle of radius 4 inches with an inscribed rectangle. The rectangle must be as large as possible.


The curve C has equation y = f(x) where f(x) = (4x + 1) / (x - 2) and x>2. Given that P is a point on C such that f'(x) = -1.


How do I find the angle between a vector and a plane in cartesian form?


Integrate (x)(e^x) with respect to x and then integrate (x)(e^x) with respect to y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning