A curve has equation y = 20x -x^(2) - 2x^(3). The curve has a stationary point at the point M where x = −2. Find the x coordinates of the other stationary point.

First you must differentiate the given equation. This give you 20-2x-6x2. Since we are told that one of the stationary points is at x=-2, this is one of the factors of the differential equation. Meaning that the differential equation fully factorised is (10-6x)(2+x) =0.Wherever the differential equation has a solution pertaining to 0, this is a stationary point of the original curve. Hence x = 5/3 is the x coordinate of the second stationary point.

LW
Answered by Lawrence W. Maths tutor

3539 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I intregrate ln(x)?


Use the double angle formulae and the identity cos(A+B)≡cos(A)cos(B)−sin(A)sin(B) to obtain an expression for cos 3x in terms of cos x only


If a particle of mass m is launched vertically upwards from the ground with velocity u m/s, how long will it take to return to the ground in terms of m, u and g?


Solve the integral: int(x^3+4x^2+sinx)dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning