How many roots does the equation x^2 = x + 12 have and what are they?

x2 -x -12 = 0. Here we have rearranged the equation so that we have 0 on one side of the equation, allowing us to now factorise. (x - 4)(x+3) = 0. By looking at the equation we can see that the number 12 has 3 multiplying factor couples; 1 and 12; 2 and 6; 3 and 4. The minus sign can be used interchangeably on the factor couples to produce the result of -12. Of the three couples, only one can produce a result of -x when the brackets are multiplied out. Hence the desired factor couple is +3 and -4. (x-4) = 0 or (x+3) = 0. Hence, x = 4 or x = -3. If we treat the two brackets as 'a' and 'b', the equation becomes a x b = 0. This would mean either 'a' or 'b' is 0. We can therefore use an "or" scenario to find that x is either 4 or -3. As a result, the equation has two distinct real roots, 4 and -3.

JE
Answered by Juzer E. Maths tutor

3458 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


How to find and classify stationary points (maximum point, minimum point or turning points) of curve.


By using the substitution x = tan(u), find the integral of [1 / (x^2+1) dx] between the limits 1 and 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences