Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1

cos(4x) = cos(2(2x)) = 2(cos^2(2x)) - 1 = 2 (cos^2(x) - 1)^2 - 1 = 8(cos^4(x)) - 8(cos^2(x)) + 1

HT
Answered by Harry T. Maths tutor

6033 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


Find the turning points of the equation y=4x^3-9x^2+6x?


differentiate x^2 + 7x + 4


Sketch 20x--x^2-2x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning