Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1

cos(4x) = cos(2(2x)) = 2(cos^2(2x)) - 1 = 2 (cos^2(x) - 1)^2 - 1 = 8(cos^4(x)) - 8(cos^2(x)) + 1

HT
Answered by Harry T. Maths tutor

5918 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle P of mass 2 kg is held at rest in equilibrium on a rough plan. The plane is inclined to the horizontal at an angle of 20°. Find the coefficient of friction between P and the plane.


Why is it that sin^2(x) + cos^2(x) = 1?


Prove why the quadratic formula works


Find the gradient of the line 4x+9y=10.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning