Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1

cos(4x) = cos(2(2x)) = 2(cos^2(2x)) - 1 = 2 (cos^2(x) - 1)^2 - 1 = 8(cos^4(x)) - 8(cos^2(x)) + 1

HT
Answered by Harry T. Maths tutor

5702 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I determine the domain and range of a composite function, fg(x) ?


What is a complex number?


Find the intersection point of the line 2y=x+3 with the ellipse y^2+2x^2=3


Given y = 2x(x^2 – 1)^5, show that dy/dx = g(x)(x^2 – 1)^4 where g(x) is a function to be determined.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning