Describe the set of transformations that will transformthe curve y=x^ to the curve y=x^2 + 4x - 1

First complete the square on the curve in the answer to obtain y=(x+2)2 - 5 Now if you were to call your original equation y=f(x) you could see that the new equation is simply y=f(x+2) - 5This is now just a case of remembering the rules of transformationsThe bit inside the brackets provides a translation through the vector (-2 0) and the bit outside the brackets provides a translation through the vector (0 -5) Putting these two vectors together gives a translation through the vector (-2 -5) which is a translation 2 units in the negative x direction and 2 units in the negative y direction

SD
Answered by Shavon D. Maths tutor

2953 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

x = 1 is a solution for the curve y = x^3-6x^2+11x-6, find the other solutions and sketch the curve, showing the location of any stationary points.


Simplify √32 + √18 giving your answer in the form of a√2.


Define the derivative of a function f(x) and use this to calculate the derivative of f(x)=x^n for positive integer n.


Given y = 2x^2 + 3x + 2 find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences