How can I demonstrate that (sin(T)+cos(T))(1-sin(T)cos(T))=(sin(T))^3+(cos(T))^3

You first develop the expression on the left side of the equation:(sin(T)+cos(T))(1-sin(T)cos(T))=sin(T)-sin^2(T)cos(T)+cos(T)-sin(T)cos^2(T)=sin(T)(1-cos^2(T))+cos(T)(1-sin^2(T))Now, you will need to use the formula cos^2(T)+sin^2(T)=1Hence, 1-cos^2(T)=sin^2(T) and 1-sin^2(T)=cos^2(T)You now have the following equation: (sin(T)+cos(T))(1-sin(T)cos(T))=sin(T)(sin^2(T))+cos(T)(cos^2(T))QED

TC
Answered by Tabea C. Maths tutor

3345 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 9x)^4 giving each term in its simplest form.


Find the indefinite integral of sin(x)*e^x


Three forces, (15i + j) N, (5qi – pj) N and (–3pi – qj) N, where p and q are constants, act on a particle. Given that the particle is in equilibrium, find the value of p and the value of q. (Mechanics 1 June 2017)


Find the coordinates of the stationary points for the curve y = x^4 - 2*x^2 + 5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning