How can I demonstrate that (sin(T)+cos(T))(1-sin(T)cos(T))=(sin(T))^3+(cos(T))^3

You first develop the expression on the left side of the equation:(sin(T)+cos(T))(1-sin(T)cos(T))=sin(T)-sin^2(T)cos(T)+cos(T)-sin(T)cos^2(T)=sin(T)(1-cos^2(T))+cos(T)(1-sin^2(T))Now, you will need to use the formula cos^2(T)+sin^2(T)=1Hence, 1-cos^2(T)=sin^2(T) and 1-sin^2(T)=cos^2(T)You now have the following equation: (sin(T)+cos(T))(1-sin(T)cos(T))=sin(T)(sin^2(T))+cos(T)(cos^2(T))QED

TC
Answered by Tabea C. Maths tutor

3023 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to solve a quadratic equation?


The polynomial p(x) is given: p(x)=x^3+2x^2-5x-6, express p(x) as the product of three linear factors


Find the turning points on the curve with the equation y=x^4-12x^2


Given that f(x) = x^2 (3x - 1)^(1/2) find f'(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences