Given that z = sin(x)/cos(x), use the quoitent rule to show that dZ/dx = sec^2(x)

let u = sin(x) and v = cos(x) => z = u/v. The quoitent rule is (u'v - v'u)/v^2, where u' = du/dx, v' = dv/dx. In this case du/dx = cos(x) and dv/dx = -sin(x) => u'v = cos^2(x) and v'u = -sin^2(x) => u'v - v'u = cos^2(x) + sin^2(x) = 1.v^2 = cos^2(x) => dz/dx = 1/v^2 = 1/cos^2(x) = sec^2(x)

KH
Answered by Katie H. Maths tutor

4117 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate sin^2(x)?


A curve is given by the equation y = (1/3)x^3 -4x^2 +12x -19. Find the co-ordinates of any stationary points and determine whether they are maximum or minimun points.


Integrate ln(x/7) with respect to x


Why don't I have to put the +C after my answer for a definite integral?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning