How do I solve an equation with both x and y variables (simultaneous equation)?

A simultaneous equation is calculated to find the pair of co-ordinates where two straight lines cross on a graph, so the question you've probably been asked is to 'solve' a pair of linear equations. This might look like: Solve the simultaneous equations: 2x + y = 5 and 3x + y = 7. The key is to answer this question in 3 steps: Eliminate, Substitute and Check. First, you want to 'eliminate' one of the variables temporarily and make sure only one variable remains, so start by subtracting common factors - in this case the 'y'. E.g. (3x + y = 7) - (2x + y = 5) --> x = 2. Once you have the x value, 'substitute' it into Equation 1 and find the value of the y variable. E.g. (3x + y = 7) --> (3(2) + y = 7) --> (6 + y = 7) --> y = 1. Finally, 'check' your answers by substituting both numbers into Equation 2. If the numbers add up correctly, then you're right and have lost no marks! E.g. (2x + y = 5) --> 2(2) + 1 = 5

TD
Answered by Tutor127404 D. Maths tutor

2849 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify: (2x – 3y)(5x + 2y)


There are some people in a cinema. 3/5 of the people in the cinema are children. For the children in the cinema, number of girls:number of boys = 2:7. There are 170 girls in the cinema. Work out the number of adults in the cinema.


Given that 7/9 = 0.77777777 (recurring) convert 0.27777777(recurring) into a fraction. Give your answer in the simplest form.


The mean of 5 numbers is 42. The 5 numbers are 45,29,63,42 and X. Find the value of X.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences