A curve has equation y = (12x^1/2)-x^3/2

y = 12x1/2 - x3/2
First take the 1/2 power and multiply by the integer in front of the x (so 12 x 1/2 = 6), then minus 1 from the power (1/2 - 1 = -1/2) and replace the power above the x with -1/2. So that makes the first part of the equation = 6x-1/2
Next we do the same to the second part of the equation, we take the 3/2 power and multiply by the integer in front of the x (so -1 x 3/2 = -3/2), then minus 1 from the power (3/2 - 1 = 1/2). So that makes the second part of the equation = (-3/2) x1/2. So putting it together the final answer is dy/dx = 6x-1/2 -(3/2) x1/2

AB
Answered by Amay B. Maths tutor

5661 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C has equation x^2+8x+y^2-12y=12. The points P and Q lie on the circle. The origin is the midpoint of the chord PQ. Show that PQ has length nsqrt(3) , where n is an integer.


Integrate 5cos(3x - 1) with respect to x


Find the equation of the tangent to the curve y = 3x^2 + 4 at x = 2 in the form y = mx + c


Integrate by parts the following function: ln(x)/x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning