Show that the curve with equation y=x^2-6x+9 and the line with equation y=-x do not intersect.

First, you equate the 2 equations to get this single quadratic equation (x^2-5x+9=0). And then evaluate the expression b^2-4ac. If b^2 -4ac is < 0 then they do not intersect. In our case b^2 -4ac is -9, which is < 0; therefore they do not intersect.

FK
Answered by Foday K. Maths tutor

3698 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative, dy/dx, of y = 8xcos(3x).


I struggle with integration, and don't understand why we need to do it


Factorise completely x − 4 x^3


Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences