Write √ 45 in the form a √ 5, where a is an integer.

You can separate any surd into factors of the number that is being square rooted, for example when you have a surd such as √ 12 it can be rewritten as √ 2 X √ 6 or √ 3 X √ 4. This is very useful when we work with surds that have factors that are square numbers, as they can be simplified. Using the example of √ 12 if we separate it into √ 3 X √ 4, we know that 4 is a square number so we can rewrite the √4 as 2. This means we can turn √ 12 into √ 3 X 2 = 2√ 3. When we look at the example in the question we are already given one of the factors, 5. This means if we divide 45 by 5 we will get the other factor, 9. So we have √ 9 X √ 5, we know that 9 is 3 squared so we can just write it as 3√ 5.

AG
Answered by Aaron G. Maths tutor

22250 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 12 counters in a bag. There is an equal number of red counters, yellow counters and blue counters in the bag. There are no other counters in the bag. 3 counters are taken from the bag. Work out the probability of taking 3 red counters.


Please explain (said question) surrounding a proof of 2 equal angles


Calculate 64^2/3. (No calculator)


equation(1) h = 3t^2 a) find h when t=5 b)find t when h=108


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning