Why does 1/x integrate to lnx?

If we let y = lnx, we then know that x = ey. By differentiating both sides of this equation with respect to y we get:dx/dy = ey, as the exponential function differentiates to itself when differentiated with respect to its power.But, as we noted earlier, x = ey, so we can substitute this in to get dx/dy = x.We can then take reciprocals of both sides to get dy/dx = 1/x.In other words the derivative of lnx is 1/x.But we know that integration is the opposite of differentiation (Fundamental Theorem of Calculus), giving us:The integral of 1/x is lnx.

CL
Answered by Chris L. Maths tutor

21052 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the product rule, differentiate: y = (x^2 - 1)(x^3 + 3).


If y^3 = 8.08, approximate y.


Given f(x): 2x^4 + ax^3 - 6x^2 + 10x - 84, and knowing 3 is a root of f(x), which is the value of a?


How do I find the roots of a quadratic equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences