Why do we need the constant of integration?

Consider three simple functions F(x)=2x, G(x)=2x-6, H(x)=2x + π/2. We can differentiate these functions with respect to x to get F’(x)=f(x)=2, G’(x)=g(x)=2, H’(x)=h(x)=2. Clearly the derivatives of these functions are all equal to 2, but the functions are not the same (a simple graph would convince us). Going backwards if we’re given u(x)=2 and we are asked to find the antiderivative of u(x) (i.e. a function U(x) such that U’(x)=u(x)) we cannot simply write that U(x)=2x since that would give us only one out of the infinite antiderivatives. Hence, we are looking for a family of functions of the form U(x)=2x+C where C is any real number. To convince ourselves this is a solution we can differentiate with respect to x which gives U’(x)=u(x)=(2x+C)’=(2x)’+(C)’=2*1+0=2.

PC
Answered by Panoraia C. Maths tutor

2944 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


a) Express 4(cosec^2(2x)) - (cosec^2(x)) in terms of sin(x) and cos (x) and hence b) show that 4(cosec^2(2x)) - (cosec^2(x)) = sec^2(x)


What is Differentiation?


Integrate (x+2)/((x+5)(x-7)) using partial fractions between the limits 5 and -2, giving your answer to 3sf


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning