Why do we need the constant of integration?

Consider three simple functions F(x)=2x, G(x)=2x-6, H(x)=2x + π/2. We can differentiate these functions with respect to x to get F’(x)=f(x)=2, G’(x)=g(x)=2, H’(x)=h(x)=2. Clearly the derivatives of these functions are all equal to 2, but the functions are not the same (a simple graph would convince us). Going backwards if we’re given u(x)=2 and we are asked to find the antiderivative of u(x) (i.e. a function U(x) such that U’(x)=u(x)) we cannot simply write that U(x)=2x since that would give us only one out of the infinite antiderivatives. Hence, we are looking for a family of functions of the form U(x)=2x+C where C is any real number. To convince ourselves this is a solution we can differentiate with respect to x which gives U’(x)=u(x)=(2x+C)’=(2x)’+(C)’=2*1+0=2.

PC
Answered by Panoraia C. Maths tutor

2795 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a curve has an equation: y = x^2 - 2x - 24x^0.5 x>0 find dy/dx and d^2y/dx^2


Find the antiderivative of the function f(x)=(6^x)+1


Solve to find sin x , 4cos^2 + 7sin x -7 =0


Solve e^x-6e^-x=1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences