4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A

Differentiate Implicitly with respect to x- ( do it term by term, terms with only x's diff normally, terms containing a Y should be differentiated following the standard pattern but then multiplied by dy/dx as an unknown)d/dx(4x^2)+ (d(y^3)/dy * dy/dx) +d/dx(-4xy)+d/dx(2^y)=08x - 3y^2(dy/dx) -4y -4x(dy/dx) + ln(2).2^y(dy/dx)= 0 (collect dy/dx terms and factorise)dy/dx = (8x -4y)/(3y^2 +4x -ln2.2^y) (plug in the coordinates of P for x and y)dy/dx = (-32)/(40-16ln(2))This is grad of tangent and the answer to (a)For (b) the grad of normal is (-1)/(dy/dx)grad normal = (-40 +16ln(2))/(-32) use ( y-y1 = M(x - x1) )4-A=(-40 + (16ln(2))/-32) ( -2 -0 )A = 13/2 -ln(2)

HP
Answered by Hamish P. Maths tutor

5857 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass M lies stationary on a rough plane inclined at an angle x to the horizontal. Find a general expression relating the coeffecient of friction between the block and the plane and the angle x. At what angle does the box begin to slide?


For the curve f(x) = 2x^3 - 54x, find the stationary points and state the nature of these points


A cannon at ground level is firing at a fort 200m away with 20m high walls. It aims at an angle 30 degrees above the horizontal and fires cannonballs at 50m/s. Assuming no air resistance, will the cannonballs fall short, hit the walls or enter the fort?


How to factorise any quadratic expression


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning