Find the value(s) of x which satisfies the equation 3x^2 + 6x + 3 = 0

First we must multiply the coefficient of x2 by the value with no x associated with it3x3 = 9Now we must find two numbers that add to make 6 and multiply to make 9+6x9 3 and 3Now we need to split the coefficient of the x value into these two numbers3x2 + 6x + 3 = 0Becomes:3x2 + 3x + 3x +3 = 0Now take a factor out of the first two terms and another out of the second two terms, leaving the same expression within the brackets.3x(x+1) + 3(x+1) = 0Now gather like terms into brackets(3x+3)(x+1) = 0If 3x+3 = 0 and x+1 = 0 then x can = -3/3 or -1 = -1Therefore x = -1

JG
Answered by Jacob G. Maths tutor

2979 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve for x: 2x^2 + 7x + 6 = 0


How do you know whether to use sin, cos or tan to find the angle in a triangle?


Rationalise the denominator of 6/√3 and simplify your answer.


ABC is a right-angled triangle (B being the right angle). Is AB=12 and BC=9, What is Angle A? (3.s.f.)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning