Find the 1st derivative of y = x^2 + 7x +3 and hence find the curves minima.

Firstly, we differentiate y = x2+7x+3 . This gives dy/dx = 2x+7.The minimum value occurs when dy/dx = 0. So find x and y when dy/dx=0. 2x+7=0 implies x= -3.5, which from the first equation means y = (-3.5)2 + 7*3.5 +3 = 39.75.Therefore, the minimum value has the position (-3.5, 39.75).

CW
Answered by Connor W. Maths tutor

3501 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate (4x^3 +3)(x^4 +3x +16)^2 dx


A smooth 4g marble is held at rest on a smooth plane which is fixed at 30 degrees to a horizontal table. The marble is released from rest - what speed is the marble travelling at 5 seconds after being released? Let g = 9.8ms^2


Given f(x) = 3 - 5x + x^3, how can I show that f(x) = 0 has a root (x=a) in the interval 1<a<2?


Differentiate the following: 5x^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences