Find the 1st derivative of y = x^2 + 7x +3 and hence find the curves minima.

Firstly, we differentiate y = x2+7x+3 . This gives dy/dx = 2x+7.The minimum value occurs when dy/dx = 0. So find x and y when dy/dx=0. 2x+7=0 implies x= -3.5, which from the first equation means y = (-3.5)2 + 7*3.5 +3 = 39.75.Therefore, the minimum value has the position (-3.5, 39.75).

CW
Answered by Connor W. Maths tutor

3722 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate by substitution?


Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0


Find the coordinates of the point of intersection of the lines 2x + 5y = 5 and x − 2y = 4.


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning