Solve the inequality |x - 2sqrt(2)| > |x - 4sqrt(2)|.

This problem can be solved by squaring both sides of the inequality, as this removes the modulus from the problem. Modulus or | | means that a term can take positive and negative values, which could also be described as, for example |x| = +- x. Since squaring removes the negative sign, the modulus is also removed. After this the brackets can be expanded on both sides of the inequality and the inequality can be rearranged to give the solution.

JA
Answered by Jade A. Maths tutor

3290 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1)Simplify sqrt 98 - sqrt 32, givimg your answer in the form k sqrt 2 where k is an integer.


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Find the intergal of 2x^5 -1/(4x^3) -5 giving each term in its simplest form.


Solve x^2 + 8x +3 = 0 by completing the square.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning