y= arcos(x). Find dy/dx in terms of x.

Rearrange the expression to create a familiar function with a known differencial: arcos(x)=y x= cos(y) Differenciate x with respect to y: dx/dy= -sin(y) We know that dy/dx= 1/(dx/dy), so rearange to find an expression for 'dy/dx' in terms of 'y': dy/dx= -1/sin(y) The answer asks for 'dy/dx' in terms of 'x', so we need to find an equation linking 'y' to 'x'; we already know that 'x=cos(y'). We now need an equation linking 'sin(y') to 'cos(y)'; we can use the trigonometric identity: 'sin^2(y)+ cos^2(y)= 1' or 'sin(y)= sqr root(1- cos^2(y))' If we subsitute sin(y) for sqr root(1- cos^2(y)) and 'x' for 'cos(y)' We arrive at the answer: dy/dx= -1/{ sqr root[1- cos^2(y)]}

DK
Answered by Danyal K. Maths tutor

3786 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 2log2(x+15) -log2(x) = 6, show that x^2-34x+225=0


Differentiate x^x


dh/dt = (6-h)/20. When t=0, h=1. Show that t=20ln(5/(6-h))


Three forces (4i + 7j)N, (pi +5j)N and (-8i+qj) N act on a particle of mass 5 kg to produce an acceleration of (2i - j) m s 2 . No other forces act on the particle. Find the resultant force acting on the particle in terms of p and q. THEN find p and Q


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning