Find the equation of the the tangent to the curve y=x^3 - 7x + 3 at the point (1,2)

yC=x3 - 7x + 3 ------> equation of curve.yT=mx+c ----------------> equation of tangent, where m is the gradient of the graph and c is the value of the y-intercept (the value of y when x=o)To find m, you must take the differential of curve, and substitute the value of x from (1,2) into it.m=3x2 -7, m= 3(1)2 -7, m=-4Now, the equation of the tangent looks like yT=-4x+C.In order to find C, Subsitute the values of the (2,1) in for x and y.2=-4(1)+C2+4=C, C=6Therefore the function of the tangent is yT=-4x+6

MB
Answered by Matthew B. Maths tutor

3484 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

dx/dt=-5x/2 t>=0 when x=60 t=0


Show that the derivative of ln(x) = 1/x


Integrate ((x^3)*lnx)dx


A circle with centre C has equation: x^2 + y^2 + 20x - 14 y + 49 = 0. Express the circle in the form (x-a)^2 +(y-b)^2=r^2. Show that the circle touches the y-axis and crosses the x-axis in two distinct points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning