Find the equation of the the tangent to the curve y=x^3 - 7x + 3 at the point (1,2)

yC=x3 - 7x + 3 ------> equation of curve.yT=mx+c ----------------> equation of tangent, where m is the gradient of the graph and c is the value of the y-intercept (the value of y when x=o)To find m, you must take the differential of curve, and substitute the value of x from (1,2) into it.m=3x2 -7, m= 3(1)2 -7, m=-4Now, the equation of the tangent looks like yT=-4x+C.In order to find C, Subsitute the values of the (2,1) in for x and y.2=-4(1)+C2+4=C, C=6Therefore the function of the tangent is yT=-4x+6

MB
Answered by Matthew B. Maths tutor

3087 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution to: ln(x) + ln(7) = ln(21)


A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


Why is the integral of a function the area?


Find the value of: d/dx(x^2*sin(x))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences