Find the turning points of the curve y=2x^3 - 3x^2 - 14.

First differentiate the equation: dy/dx = 6x^2 - 6xSet this equal to 0 as at turning points the change in gradient is 0: 0 = 6x^2 - 6x6x(x-1)=06x=0 therefore x=0(x-1)=0 therefore x=1x=1,0Now substitute back into equation 1 to find y values and hence co ordinatesx=1 y=-15x=0 y=-14

ER
Answered by Edward R. Maths tutor

5102 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equations: x=2sin(t) and y=1-cos(2t). Find dy/dx at the point where t=pi/6


The height x metres, of a column of water in a fountain display satisfies the differential equation dx/dt = 8sin(2t)/(3sqrt(x)), where t is the time in seconds after the display begins. (a) Solve the differential equation, given that x(0)=0


Find the equation of the tangent to the curve y = 2x^2 + x - 1 at the point where x = 1.


If y=cos(3x)cosec(4x), find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences