Find the integral of the following equation: y = cos^2(x)

First convert y into a suitably form.cos(2x) = 1 - 2cos2(x)cos2x = (1-cos(2x))/2
integral of y = integral of (1-cos(2x))/2 = (1/2)*(x-(1/2)sin(2x)) + C = x/2 - sin(2x)/4 + C

MH
Answered by Marc H. Maths tutor

3834 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = 3x^2 + 4 at x = 2 in the form y = mx + c


A curve has equation y= e^x -5x, Find the coordinates of the stationary point and show it is a minimum point


How to differentiate using the Product Rule


find the value of x for when f(x)=0. f(x)=9x^(2)-4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences