Find the integral of the following equation: y = cos^2(x)

First convert y into a suitably form.cos(2x) = 1 - 2cos2(x)cos2x = (1-cos(2x))/2
integral of y = integral of (1-cos(2x))/2 = (1/2)*(x-(1/2)sin(2x)) + C = x/2 - sin(2x)/4 + C

MH
Answered by Marc H. Maths tutor

3621 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 9^(3x+)1 in the form 3^y giving y in the form of ax+b where a and b are constants.


How exactly does integration by parts work?


Why is the derivative of inverse tan(x) 1/(1+x^2)?


f(x) = (x-5)/(x^2+5x+4), express this in partial fractions and hence find the integral of f(x) dx between x=0 and x=2, giving the answer as a single simplified logarithm.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences