How do I differentiate an expression of the form y = (ax+b)^n?

In order to differentiate this we need to use the chain rule- first let u = ax + b. Then differentiating, du/dx = a. By substituting into the original expression, we can obtain y = u^n. Differentiating that gives dy/du = nu^(n-1). Since, using the chain rule, dy/dx = du/dx * dy/du = anu^(n-1). Subbing back in for u, we obtain our answer: an(ax+b)^(n-1).

SC
Answered by Sam C. Maths tutor

9951 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the integral between the limits 0 and pi/2 of sin(x)cos(x) with respect to x.


How do I solve quadratic equation by completing the square : X^2 - 4X = 5


Solve the inequality (9x+5)/12 > (4x+1)/3


SOLVE THE FOLLOWING SIMULTANEOUS EQUATIONS: 5x^2 + 3x - 3y = 4, -4x - 6y + 5x^2 = -7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences