How do I differentiate an expression of the form y = (ax+b)^n?

In order to differentiate this we need to use the chain rule- first let u = ax + b. Then differentiating, du/dx = a. By substituting into the original expression, we can obtain y = u^n. Differentiating that gives dy/du = nu^(n-1). Since, using the chain rule, dy/dx = du/dx * dy/du = anu^(n-1). Subbing back in for u, we obtain our answer: an(ax+b)^(n-1).

SC
Answered by Sam C. Maths tutor

10593 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  


The curve C has parametric equations x=2cos(t) and y=3cos(2t). Find and expression for dy/dx in terms of t.


The curve A (y = x3 – x2 + x -1) is perpendicular to the straight-line B at the point P (5, 2). If A and B intersect at P, what is the equation of B? Also, find any stationary points of the curve A.


Why is the derivative of the exponential function itself?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning