By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.

cos(2x)=cos2(x)-sin2(x)=2cos2(x)-1
Therefore:cos(2x)/cos2(x)=(2cos2(x)-1)/cos2(x)=2cos2(x)/cos2(x) - 1/cos2(x)=2 - 1/cos2(x)=2 - sec2(x)
Integral of sec2(x) = tan(x)
Integral of 2 = 2x
[2x - tan(x)] between pi/4 and pi/3
= (2pi/3 - tan(pi/3)) -(pi/2 - tan(pi/4))
= (2pi/3 - sqrt(3)) - (pi/2 - 1)
= pi/6 - sqrt(3) + 1

HF
Answered by Hugo F. Maths tutor

7497 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.


Differentiate this equation: xy^2 = sin(3x) + y/x


Differentiation: How to use the chain rule


G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning