By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.

cos(2x)=cos2(x)-sin2(x)=2cos2(x)-1
Therefore:cos(2x)/cos2(x)=(2cos2(x)-1)/cos2(x)=2cos2(x)/cos2(x) - 1/cos2(x)=2 - 1/cos2(x)=2 - sec2(x)
Integral of sec2(x) = tan(x)
Integral of 2 = 2x
[2x - tan(x)] between pi/4 and pi/3
= (2pi/3 - tan(pi/3)) -(pi/2 - tan(pi/4))
= (2pi/3 - sqrt(3)) - (pi/2 - 1)
= pi/6 - sqrt(3) + 1

HF
Answered by Hugo F. Maths tutor

7164 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


Find the gradient of the function f(x,y)=x^3 + y^3 -3xy at the point (2,1), given that f(2,1) = 6.


a) i) find dy/dx of y = 3x^4 - 8x^3 - 3 ii) then find d^2y/dx^2 b) verify that x=2 at a stationary point on the curve c c) is this point a minima or a maxima


A small stone is projected vertically upwards from a point O with a speed of 19.6m/s. Modelling the stone as a particle moving freely under gravity, find the length of time for which the stone is more than 14.7 m above O


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning