Prove Pythagoras' Theorem

Never in a GCSE syllabus, but still a question I had as a student and one I hear today- something, I feel, is worth going over (Similar in a sense to proving that completing the square works). We use the "dissection and rearrangement" proof. We take a square of side length (a+b), and put a tilted square inside that one of length c, so that the corner points of the little square touch the bigger square "a" away from one corner and "b" away from the other. A diagram will make this clear.
The area of the whole, bigger square is (a+b)(a+b) = a2 + b2 + 2ab (using FOIL expansion)The bigger square is made up 5 components: 4 right angled triangles and the little square. The area of the little square is c^2. The area of each of the four triangles are (ab)/2. So in total we have c^2 + (ab)/2 * 4.The areas of the bigger square and the 5 components must be equal. SO:a2 + b2 + 2ab = c 2 + 2ab gives a2 + b2 = c2


SC
Answered by Sam C. Maths tutor

3085 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I use trigonometric ratios to work out lengths in right-angled triangles?


How do I expand a factorised expression?


We have 2 spinners: spinner A and spinner B. Spinner A can land on 2, 3, 5 or 7. Spinner B can land on 2, 3, 4, 5 or 6. Spin both. Win if one spinner lands on odd and the other lands on even. Play game twice, what is the probability of winning both games?


Solve algebraically: 6a+3b=24, 3a-b=7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning