Use integration to find the exact value of [integral of] (9-cos^2(4x)) dx

  1. you cannot integrate cos^2(4x) without making substitutions first. Use the cos^2(x) + sin^2(x) = 1 identity with the cos(2x)=cos^2(x)-sin^2(x), rearrange to get the identity cos(2x) = 2cos^2(x) - 1, then cos^2(x) = 0.5(cos(2x)+1)
    2) use this new identity to rewrite 6cos^2(4x), which will become 3cos(8x)+3
    3) integrate the constant 9 to become 9x
    4) integrate -(3cos(8x)+3) to get -(3/8sin(8x) - 3x)
    5) final answer is 6x - 3/8(sin(8x))
AF
Answered by Anna F. Maths tutor

7494 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

You have a five-litres jug, a three-litres jug, and unlimited supply of water. How would you come up with exactly four litres of water (with no measuring cup)?


How do you differentiate by first principles?


How would I differentiate something in the form of (ax+b)^n


The shortest side of a triangle is 4.3m long. Two of the angles are 45.1 and 51.2 degrees respectively. Find the length of the longest side.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning