Use integration to find the exact value of [integral of] (9-cos^2(4x)) dx

  1. you cannot integrate cos^2(4x) without making substitutions first. Use the cos^2(x) + sin^2(x) = 1 identity with the cos(2x)=cos^2(x)-sin^2(x), rearrange to get the identity cos(2x) = 2cos^2(x) - 1, then cos^2(x) = 0.5(cos(2x)+1)
    2) use this new identity to rewrite 6cos^2(4x), which will become 3cos(8x)+3
    3) integrate the constant 9 to become 9x
    4) integrate -(3cos(8x)+3) to get -(3/8sin(8x) - 3x)
    5) final answer is 6x - 3/8(sin(8x))
AF
Answered by Anna F. Maths tutor

6982 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How does the product rule for differentiation work


Shower-cleaner liquid is sold in spray bottles. The volume of liquid in a bottle may be modelled by a normal distribution with mean 955 ml and a standard deviation of 5 ml. Determine the probability that the volume in a particular bottle is:


integrate cos^2(2x)sin^3(2x) dx


How do you find the first order derivative of sin(x) and cos(x) functions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences