Differentiate: f(x)=2(sin(2x))^2 with respect to x, and evaluate as a single trigonometric function.

f(x) = 2sin2(2x)Therefore, using the chain rule: f'(x)=2 x 2cos(2x) x 2sin(2x)(The 2 at the front arises from the constant 2, at the start of f(x), the 2cos(2x) comes from differentiating sin2(2x), then the 2sin(2x) comes from decreasing the original power of the sine function by 1 and multiplying by the constant in the function, 2)Therefore, f'(x)=6cos(2x)sin(2x)As we know 2sin(x)cos(x)=sin(2x) (double-angle formula), we can simplify f'(x) into f'(x)=3sin(4x)

SH
Answered by Sam H. Maths tutor

4804 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A line L is parallel to y = 4x+5 and passes through the point (-1,6). Find the equation of the line L in the form y = ax+b.


Find an equation of the curve with parametric equations x=3sin(A) and y=4cos(A), in the form bx^2+cy^2=d.


The curve C has equation 4x^2 – y^3 – 4xy + 2^y = 0 The point P with coordinates (–2, 4) lies on C . Find the exact value of dy/dx at the point P .


Using the factor theorem, factorise x^4 - 3x^3 - 3x^2 + 11x - 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning