How do you calculate the angle between two vectors?

The formula axb = |a||b|sinθ is given in the formula bookletTherefore, θ, the angle between both vectors a and b is equal to sin-1 ((axb)/(|a||b|))Remember, axb can be found by multiplying a and b together as matrices (if a reminder is needed on how to do this, I'll show you on a whiteboard); and |a| can be found by square rooting all the components of a squared (e.g. square root of ai2+ aj2 + ak2 if the vector is three dimentional).

GT
Answered by Gabriel Thomas N. Maths tutor

4235 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x=(t-1)^3, y=3t-8/(t^2), t is not equal to zero. Find dy/dx in terms of t.


A circle C has centre (-5, 12) and passes through the point (0,0) Find the second point where the line y=x intersects the circle.


Determine the integral: ∫x^(3/4)dx


Find the derivative of x^3 - (y^2)x =3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences