find dy/dx for the equation y = 6x ^(1/2)+x+3

Here you are being asked to differentiate. When differentiating, you times the value of x by its power and then subtract 1 from the power. So for this question you times 6x^(1/2) by 1/2 and then subtract 1 from its power, this gives you 3x^(-1/2). x is the same as x^1 so by following the same rule, this leaves you with x^0. Any number to the power of 0 is 1, therefore, x goes to 1. And finally the 3, it has no x term and so, therefore, is 0. Put all together the answer is dy/dx=3x^(-1/2)+1

GB
Answered by George B. Maths tutor

5243 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


Integrate (x+2)/((x+5)(x-7)) using partial fractions between the limits 5 and -2, giving your answer to 3sf


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


Integrate sin^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning