What is the area under the graph of (x^2)*sin(x) between 0 and pi

To solve this integral you need to use integration by parts twice. You separate the two term in the integral into x^2 and sin(x). You then multiple x^2 by the integral of sin(x) (-cos(x)) and apply the upper and lower bound to the product of the multiplication. The answer for this first part should be pi^2. Next you multiply the integral of sin(x) by the derivative of x^2 and integrate over the product (Note we are going to subtract this term from the first term pi^2). You should have a integral that is similar to the first integral but instead of x^2 you have 2x. You have to apply integration by parts a second time. Again separate the terms in the integral (2x and -cos(x)) and multiply the 2x by the integral of -cos(x) (-sin(x)) and apply the upper and lower bound of integration. You should get and answer of zero due to the sin(x) term being zero at 0 and pi. Subtract this result from the first result (pi^2). For the final step multiply the derivative of 2x (2) by the intergral of -cos(x) (sin(x)) and integrate with respect to the limits of integration. You should get 4. Subtract pi^2 by 4 and that is the answer. Hopefully this is clear I didnt understand how to use the whiteboard.

KP
Answered by Khalil P. Maths tutor

4021 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the derivative of x^n, nx^(n-1)?


1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


The curve C has the equation: 16y^3 +9x^2y-54x=0, find the x coordinates of the points on C where dy/dx = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences