Rationalise the fraction : 5/(3-sqrt(2))

To rationalise a fraction we have to eliminate the surds in the denominator. We know we can multiply the top and the bottom of a fraction by the same thing, as this is equivalent to multiplying by 1. Notice that(3-sqrt(2))(3+sqrt(2))=9-3sqrt(2)+3sqrt(2)-2=9-2=7Then we can multiply the fraction by (3+sqrt(2))/(3+sqrt(2)) to eliminate the surd in the denominator.5/(3-sqrt(2)) = 5/(3-sqrt(2)) x 1 = 5/(3-sqrt(2)) x (3+sqrt(2))/(3+sqrt(2)) = 5(3+sqrt(2))/(3-sqrt(2))(3+sqrt(2)) = 5(3+sqrt(2)/7

MM
Answered by Michael M. Maths tutor

4266 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve y=sin(x^2) + e^(x) at the point x= sqrt(pi)


(a) Express 9x+11/(2x+3)(x-1) as partial fractions and (b) find the integral of 9x+11/(2x+3)(x-1) with respect to x


https://1drv.ms/w/s!Ajvn5XL_gYTXgaZeAS-K7z62VSxjYw?e=lnAZLx


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning