Find the intersection coordinates of both axis with the function: f(x)=x^2-3x+4/3

Find the y1 coordinate, where x1 = 0, this is the intersection with y-axis. f(0)=4/3, therefore one intersection Py=[0,4/3]Find the x1,2 coordinates, where y = 0, this are the intersections with x-axis.0=x^2-3x+4/3, solve quadratic equation -> x1 =(3+(11/3)1/2)/2 -> Px1=[(3+(11/3)1/2)/2,0] -> x2 =(3-(11/3)1/2)/2 -> Px2=[(3-(11/3)1/2)/2,0]

MS
Answered by Martin S. Maths tutor

2607 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=x^2+5x+2 at the point where x=5


(4-2x)/(2x+1)(x+1)(x+3) = A/(2x+1)+B/(x+1)+C(x+3) Find the values of the constants A, B and C


Express 6sin(2x)+5cos(x) in the form Rsin(x+a) (0degrees<x<90degrees)


(x+2)(x-3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences