Find the intersection coordinates of both axis with the function: f(x)=x^2-3x+4/3

Find the y1 coordinate, where x1 = 0, this is the intersection with y-axis. f(0)=4/3, therefore one intersection Py=[0,4/3]Find the x1,2 coordinates, where y = 0, this are the intersections with x-axis.0=x^2-3x+4/3, solve quadratic equation -> x1 =(3+(11/3)1/2)/2 -> Px1=[(3+(11/3)1/2)/2,0] -> x2 =(3-(11/3)1/2)/2 -> Px2=[(3-(11/3)1/2)/2,0]

MS
Answered by Martin S. Maths tutor

3047 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


I'm confused about differentiation and integration, could you explain these to me?


By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.


Find the turning points of the curve y=2x^3 - 3x^2 - 14.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning