Find the intersection coordinates of both axis with the function: f(x)=x^2-3x+4/3

Find the y1 coordinate, where x1 = 0, this is the intersection with y-axis. f(0)=4/3, therefore one intersection Py=[0,4/3]Find the x1,2 coordinates, where y = 0, this are the intersections with x-axis.0=x^2-3x+4/3, solve quadratic equation -> x1 =(3+(11/3)1/2)/2 -> Px1=[(3+(11/3)1/2)/2,0] -> x2 =(3-(11/3)1/2)/2 -> Px2=[(3-(11/3)1/2)/2,0]

MS
Answered by Martin S. Maths tutor

2546 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate "sin(2x)"


Calculate the integral of (3x+3)/(2x^2+3x) between the limits 39 and 3


Consider the function F(x)=17(x^4)+13(x^3)+12(x^2)+7x+2. A) differentiate F(x) B)What is the gradient at the point (2,440)


Differentiate x^2 ln(3x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences