Find the angle between two lines with vector equations r1 = (2i+j+k)+t(3i-5j-k) and r2 = (7i+4j+k)+s(2i+j-9k)

Explain the dot product and the relation : a.b= ¦a¦¦b¦cos(x) where a.b is the dot product of two vectors, ¦a¦ and ¦b¦ are the magnitude of a and b respectively and x is the angle between them. Since the angle between two lines only depends on their gradients, we only need to consider the direction product for this question.Therefore let a = (3i-5j-k) and b = (2i+j-9k) 1 - Find the dot product of vectors a and b: (3i-5j-k).(2i+j-9k) = (32)+(-51)+(-1*-9) = 6-5+9 = 10 2 - Find the magnitude of vectors a and b: ¦a¦ = ¦3i-5j-k¦ = sqrt(32+(-5)2+(-1)2) = sqrt(35) ¦b¦ = ¦2i+j-9k¦ = sqrt(22+12+(-9)2) = sqrt(86) Substitute the values of a.b ¦a¦ and ¦b¦ into a.b= ¦a¦¦b¦cos(x) and simplify: 10 = sqrt(35)*sqrt(86)cos(x) 10 = sqrt(3586)*cos(x) Rearrange for cos(x): cos(x) = 10/sqrt(3010) x = cos-1(10/sqrt(3010)) x = 79.5o (t 3s.f)




MS
Answered by Muhammad S. Maths tutor

5950 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The gradient of the curve at point (x,y) is given by dy/dx = [7 sqrt(x^5)] -4. where x>0. Find the equation of the curve given that the curve passes through the point 1,3.


Given y=(1+x^3)^0.5, find dy/dx.


Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1


Find the coordinates of the point of intersection between the line L:(-i+j-5k)+v(i+j+2k) and the plane π: r.(i+2j+3k)=4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning