Find the equation to the tangent to the curve x=cos(2y+pi) at (0, pi/4)

Normally to find a tangent we want to work out dy/dx, but since this equation is x=something, it's much easier to work out dx/dy first, then we get dy/dx by doing 1/(dx/dy)=dy/dx.
By the chain rule, dx/dy = -sin(2y+pi)2, since cos differentiates to -sin, and we need to remember to differentiate the bit in the brackets too, which is why we multiply by 2. Now let's substitute in our x and y values, and we get that dx/dy = -2sin(3pi/2) and (0, pi/4), which equals 2. So by using the little formula I gave earlier, we get dy/dx=1/2 here. So we know the tangent line has gradient 1/2, and passes through the point (0, pi/4), so we use the equation y=mx+c with m=1/2, which gives us c=pi/4, and the equation of the tangent line is y=1/2x + pi/4.

SJ
Answered by Sarah J. Maths tutor

10209 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


How do you differentiate the curve y = 4x^2 + 7x + 1? And how do you find the gradient of this curve?


A curve has equation y = (x-1)e^(-3x). The curve has a stationary point M. Show that the x-coordinate of M is 4/3.


(x-4)^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences