Work out the gradient of the tangent to the curve (y=x^2-x-2) at the point where x=2

y=x^2-x-2y=(x+1)(x-2)The gradient (dy/dx) measures the rate of the change in y with respect to x. So this can be used to help us find the gradient of a function at any point along it. The question asks the to find the gradient when x=2. So firstly we have to differentiate the curve.dy/dx=2x-1Then substitute the x value in: 2 (2) -1 = 3Therefore the gradient of the tangent is 3

OG
Answered by Oriane G. Maths tutor

3773 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following pair of simultaneous equations: 5x+2y=8 and 2x+y=7


What is 3!/5! written in standard form?


On a graph, the lines with the equations y=x^2+5x+4 and y=-3x-8 meet at two distinct points. Find the coordinates of these meeting points.


x^2-12x+20=0 Find x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences