Work out the gradient of the tangent to the curve (y=x^2-x-2) at the point where x=2

y=x^2-x-2y=(x+1)(x-2)The gradient (dy/dx) measures the rate of the change in y with respect to x. So this can be used to help us find the gradient of a function at any point along it. The question asks the to find the gradient when x=2. So firstly we have to differentiate the curve.dy/dx=2x-1Then substitute the x value in: 2 (2) -1 = 3Therefore the gradient of the tangent is 3

OG
Answered by Oriane G. Maths tutor

3898 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write down the length of side "a"


P is a point on the circle with equation x^2 + y^2 = 80. P has x-coordinate 4 and is below the x-axis.Work out the equation of the tangent to the circle at P.


How do I factorise this expression? [Let’s say it’s x^2 + 5x + 6]


Solve x^2 + 4x + 4 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences