Given that x = cot y, show that dy/dx = -1/(1+x^2)

  1. Identify that we are looking at dy/dx, not dx/dy and realise the relationship that dy/dx=1/(dx/dy)2)Try find dx/dy;cot = 1/tan or (tan)-1Hence, x=(tan y )-1 implying dx/dy = (-1)(tan y)-2(sec2 y ) =(-1)(sec2 y)/(tan2 y )Given 1+tan2=sec2, [from students memory or able to derive from cos2 + sin2 = 1] we get dx/dy=(-1)(1+tan2 y)/(tan2 y)and dy/dx= (-1)(tan2 y)/(1+tan2 y), dividing through by tan2 y, givesdy/dx = (-1)/(cot2 y + 1 ) and as x = cot y, dy/dx = -1/(1+x2) as required. 3) Alternatively as differential of cot is given as -cosec2 , we have;dx/dy= - cosec2(y) , hence dy/dx=(-1)/(cosec2(y)), and as cot2 (y)+1=cosec2(y)we get dy/dx=(-1)/(cot2 (y)+1), and so dy/dx = -1/(1+x2)
JF
Answered by Jacob F. Maths tutor

11072 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x)=x^3 - 2x^2 + 5. For which value(s) of x does f(x)=5?


Express (3x^2 - 3x - 2)/(x-1)(x-2) in partial fractions


A block mass m lies on an incline rough plane, with coefficient of friction µ. The angle of the block is increased slowly, calculate the maximum angle of the slope that can be achieved without the block slipping.


Write cosx - 3sinx in the form Rcos(x + a)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences