What are the values of x and y?

 a) 3x + 5y =  26  

b) 2x + 2y = 12

Step One: We need to find a way to equate either the x terms of the y terms in each equation. Multiply equation a) by 2 and equation b) by 3 to form the following equations.

a) 6x + 10y = 52

b) 6x + 6y = 36

Step Two: Take equation b) from equation a) to eliminate the x component.

  a) 6x + 10y = 52

 - b) 6x + 6y = 36

    0x    + 4y = 16

                 y = 4

Step Three: substitute the value of y into either equation to find the value of x.

b) 2x + 2y = 12

    2x + (2x4) =12

    2x + 8 = 12

    2x = 4

    x = 2

x=2 y=4                

 

EA
Answered by Emily A. Maths tutor

134479 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that an angle subtended by an arc is double at the centre then at the perimeter.


Simplify completely: 3x^2 - 14x +5 /2x^2 -10x


Tommy, Anna and Jacob all have 40 sweets. they decide to split the sweets between each other in the ratio 1:4:5. Calculate how many sweets each get, rounding down your answer where necessary.


Jo wants to work out the solutions of x^2 + 3x – 5 = 0 She says, ‘‘The solutions cannot be worked out because x^2 + 3x – 5 does not factorise to (x + a)(x + b) where a and b are integers.’’ Is Jo correct?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences